

### Paper Reading

### GANs for Discrete Text Generation

Junfu Oct. 20<sup>th</sup>, 2018



- Problems in Image Captioning
  - Imitate the language structure patterns (phrases, sentences)
  - Templated and Generic (Different image -> Same Captions)
  - Stereotype of sentences and phrases (50% from trainingset)



Conventional: A vase with flowers sitting on a table.

GT: A vase filled with flowers and lemons on a table.



Conventional: A vase with flowers sitting on a table.

GT: Creative centerpiece floral arrangement at an outdoor table.



Conventional: A bird is sitting on top of a bird feeder.

Most similar GT in training: A bird is on top of a bird feeder.

2 Xihui Liu, et al. Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data. ECCV 2018, CUHK.



#### Motivation

- Both discriminativeness and fidelity should be improved
- Discriminativeness: distinguish correspond. image and others
- Dual task: Image captioning Text-to-Image
- Model Architecture
  - Captioning Module
  - Self-retrieval Module
    - Act as a metric and an evaluator of caption discriminativeness to assure the quality of generated captions
    - Use unlabeled data to boost captioning performance



#### Framework

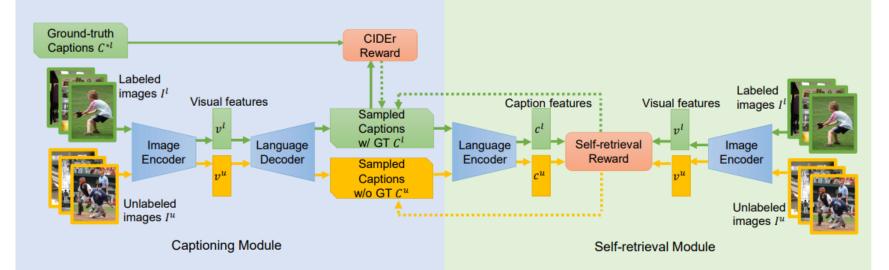
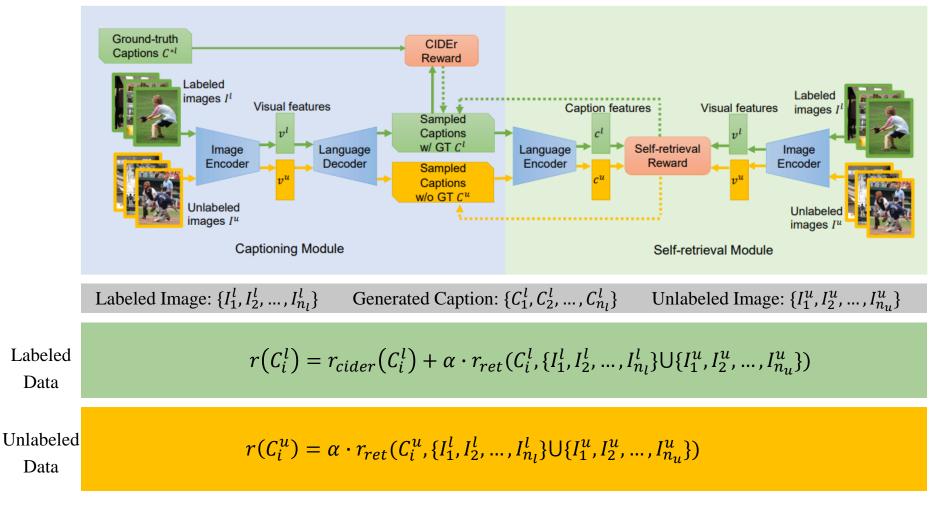


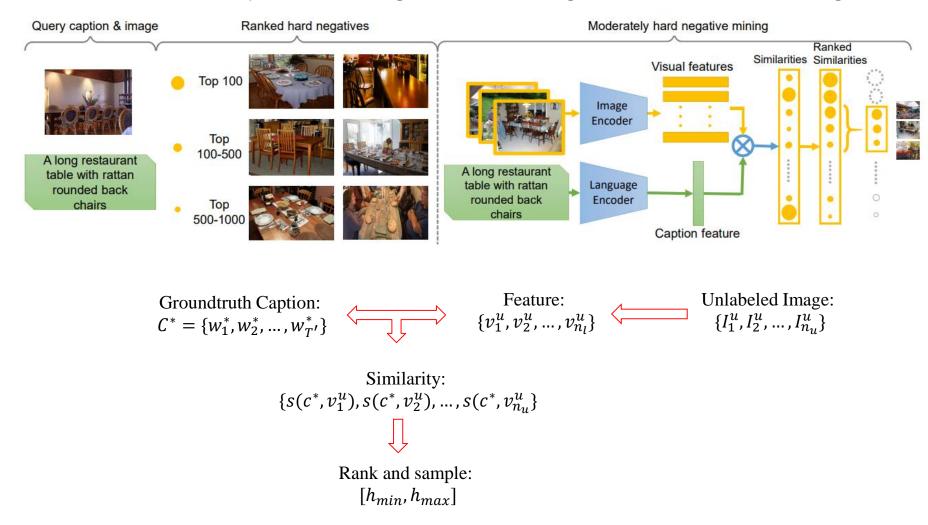
Image Image Encoder (CNN) Caption Encoder (GRU) Caption  $C = \{w_1, w_2, \dots, w_T\}$  $v = E_i(I)$ Ι  $c = E_c(C)$  $C^* = \{w_1^*, w_2^*, \dots, w_{T'}^*\}$ Similarity between  $c_i$  and  $v_i$ :  $s(c_i, v_i)$ Decoder: LSTM Encoder: CNN  $v = E_i(I)$  $C = D_c(v)$ Train with ranking loss: Pre-train:  $L_{CE}(\theta) = -\sum_{t=1} \log(p_{\theta}(w_t^* | v, w_t^*, ..., w_{t-1}^*)) \quad L_{ret}(C_i, \{I_1, I_2, ..., I_n\}) = \max_{j \neq i} [m - s(c_i, v_i) + s(c_i, v_j)]_+$ where  $[x]_{+} = \max(x, 0)$ Adv-train:  $r(C_i^s) = r_{cider}(C_i^s) + \alpha \cdot r_{ret}(C_i^s, \{I_1, \dots, I_n\})$ 



### Improving Captioning with Partially Labeled Image



#### Moderately Hard Negative Mining in Unlabeled Images





### Training Strategy

- Train text-to-image self-retrieval module
  - Images and corresponding captions in labeled dataset
- Pre-train captioning module
  - Images and corresponding captions in labeled dataset
  - Share image encoder with self-retrieval module
  - ✓ MLE with cross-entropy loss
- Continue training by REINFORCE
  - Reward for labeled data: CIDEr and self-retrieval reward
  - Reward for unlabeled data: self-retrieval reward
  - CIDEr: guarantee the similarity between caption and groundtruth
  - ✓ Self-retrieval reward: encourage caption to be discriminative



#### Implementation Details

- Self-retrieval module:
  - ✓ Word embedding: 300-D vector
  - Image encoder: ResNet-101
  - Language decoder: single GRU with 1024 hidden units
- Captioning module:
  - Share image encoder with self-retrieval module
  - Language decoder: attention LSTM
  - Visual feature: 2048x7x7 before pooling
  - ✓  $\alpha = 1$ , #labeled data: #unlabeled data = 1:1
  - Inference:
    - Beam search size: 5
- Unlabeled data: COCO unlabeled images



#### Quantitative results

**Table 1.** Single-model performance by our proposed method and state-of-the-art meth-ods on COCO standard Karpathy test split.

| Methods             | CIDEr  | SPICE        | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L |
|---------------------|--------|--------------|--------|--------|--------|--------|--------|---------|
| Hard-attention [47] | -      | -            | 71.8   | 50.4   | 35.7   | 25.0   | 23.0   | -       |
| Soft-attention [47] | -      | -            | 70.7   | 49.2   | 34.4   | 24.3   | 23.9   | -       |
| VAE [32]            | 90.0   | -            | 72.0   | 52.0   | 37.0   | 28.0   | 24.0   | -       |
| ATT-FCN [50]        | -      | -            | 70.9   | 53.7   | 40.2   | 30.4   | 24.3   | -       |
| Att-CNN+RNN [46]    | 94.0   | -            | 74.0   | 56.0   | 42.0   | 31.0   | 26.0   | -       |
| SCN-LSTM [14]       | 101.2  | -            | 72.8   | 56.6   | 43.3   | 33.0   | 25.7   | -       |
| Adaptive [26]       | 108.5  | -            | 74.2   | 58.0   | 43.9   | 33.2   | 26.6   | -       |
| SCA-CNN [5]         | 95.2   | -            | 71.9   | 54.8   | 41.1   | 31.1   | 25.0   | 53.1    |
| SCST-Att2all [35]   | 114.0  | -            | -      | -      | -      | 34.2   | 26.7   | 55.7    |
| LSTM-A [49]         | 100.2  | 18.6         | 73.4   | 56.7   | 43.0   | 32.6   | 25.4   | 54.0    |
| DRL [34]            | 93.7   | -            | 71.3   | 53.9   | 40.3   | 30.4   | 25.1   | 52.5    |
| Skeleton Key [43]   | 106.9  | -            | 74.2   | 57.7   | 44.0   | 33.6   | 26.8   | 55.2    |
| CNNL+RHN [16]       | 98.9   | -            | 72.3   | 55.3   | 41.3   | 30.6   | 25.2   | -       |
| TD-M-ATT [4]        | 111.6  | -            | 76.5   | 60.3   | 45.6   | 34.0   | 26.3   | 55.5    |
| ATTN+C+D(1) [27]    | 114.25 | <b>21.05</b> | -      | -      | -      | 36.14  | 27.38  | 57.29   |
| Ours-baseline       | 112.7  | 20.0         | 79.7   | 62.2   | 47.1   | 35.0   | 26.7   | 56.4    |
| Ours-SR-FL          | 114.6  | 20.5         | 79.8   | 62.3   | 47.1   | 34.9   | 27.1   | 56.6    |
| Ours-SR-PL          | 117.1  | 21.0         | 80.1   | 63.1   | 48.0   | 35.8   | 27.4   | 57.0    |

Baseline: captioning module only trained only with CIDEr (w/o self-retrieval module)

SR-FL: proposed method training with fully-labeled data

SR-PL: proposed method training with additional unlabeled data



#### Quantitative results

 $\label{eq:Table 2. Single-model performance by our proposed method and state-of-the-art methods on Flickr30k.$ 

| Methods             | CIDEr | SPICE | BLEU-1      | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L |
|---------------------|-------|-------|-------------|--------|--------|--------|--------|---------|
| Hard-attention [47] | -     | -     | 66.9        | 43.9   | 29.6   | 19.9   | 18.5   | -       |
| Soft-attention [47] | -     | -     | 66.7        | 43.4   | 28.8   | 19.1   | 18.5   | -       |
| VAE [32]            | -     | -     | 72.0        | 53.0   | 38.0   | 25.0   | -      | -       |
| ATT-FCN [50]        | -     | -     | 64.7        | 46.0   | 32.4   | 23.0   | 18.9   | -       |
| Att-CNN+RNN [46]    | -     | -     | 73.0        | 55.0   | 40.0   | 28.0   | -      | -       |
| SCN-LSTM [14]       | -     | -     | 73.5        | 53.0   | 37.7   | 25.7   | 21.0   | -       |
| Adaptive [26]       | 53.1  |       | 67.7        | 49.4   | 35.4   | 25.1   | 20.4   | -       |
| SCA-CNN [5]         | -     | -     | 66.2        | 46.8   | 32.5   | 22.3   | 19.5   | -       |
| CNNL+RHN [16]       | 61.8  | 15.0  | <b>73.8</b> | 56.3   | 41.9   | 30.7   | 21.6   | -       |
| Ours-baseline       | 57.1  | 14.2  | 72.8        | 53.4   | 38.0   | 27.1   | 20.7   | 48.5    |
| Ours-SR-FL          | 61.7  | 15.3  | 72.0        | 53.4   | 38.5   | 27.8   | 21.5   | 49.4    |
| Ours-SR-PL          | 65.0  | 15.8  | 72.9        | 54.5   | 40.1   | 29.3   | 21.8   | 49.9    |

Baseline: captioning module only trained only with CIDEr (w/o self-retrieval module) SR-FL: proposed method training with fully-labeled data SR-PL: proposed method training with additional unlabeled data

# Line and Technological

#### Quantitative results

| Experiment Settings          |                |       | SPICE       | BLEU-3      | BLEU-4 | METEOR | ROUGE-L |
|------------------------------|----------------|-------|-------------|-------------|--------|--------|---------|
| Baseline                     |                |       | 20.0        | 47.1        | 35.0   | 26.7   | 56.4    |
|                              | VSE++          | 117.1 | 21.0        | 48.0        | 35.8   | 27.4   | 57.0    |
| Retrieval Loss               | VSE0           | 116.9 | 20.9        | 47.7        | 35.7   | 27.4   | 56.8    |
|                              | softmax        | 114.5 | 20.5        | 46.8        | 34.6   | 27.1   | 56.5    |
| Weight of                    | 0              | 112.7 | 20.0        | 47.1        | 35.0   | 26.7   | 56.4    |
| Self-retrieval               | 1              | 117.1 | 21.0        | 48.0        | 35.8   | 27.4   | 57.0    |
| Reward $\alpha$              | 4              | 113.7 | 20.5        | 46.5        | 34.3   | 27.0   | 56.5    |
| Ratio between labeled        | 1:2            | 115.4 | 20.5        | 46.8        | 34.7   | 27.2   | 56.6    |
| and unlabeled                | 1:1            | 117.1 | 21.0        | <b>48.0</b> | 35.8   | 27.4   | 57.0    |
| and unlabeled                | 2:1            | 115.0 | 20.5        | 46.8        | 34.7   | 27.2   | 56.7    |
| Hard Negative<br>Index Range | no hard mining | 114.6 | 20.7        | 46.7        | 34.6   | 27.3   | 56.7    |
|                              | top 100        | 114.1 | 20.3        | 46.6        | 34.5   | 27.0   | 56.4    |
| index nange                  | top 100-1000   | 117.1 | <b>21.0</b> | 48.0        | 35.8   | 27.4   | 57.0    |

**Table 3.** Ablation study results on COCO.

VSE0: 
$$L_{ret}(C_i, \{I_1, I_2, \cdots, I_n\}) = \sum_{j \neq i} [m - s(c_i, v_i) + s(c_i, v_j)]_+$$
  
VSE++:  $L_{ret}(C_i, \{I_1, I_2, \cdots, I_n\}) = \max_{j \neq i} [m - s(c_i, v_i) + s(c_i, v_j)]_+$ 



#### Uniqueness and novelty evaluation

**Table 4.** Text-to-image retrieval performance, and uniqueness and novelty of generated captions by different methods on COCO.

| Methods           | Generated-o | caption-to-in | nage retrieval | Uniqueness and novelty evaluation |                |  |
|-------------------|-------------|---------------|----------------|-----------------------------------|----------------|--|
|                   | recall@1    | recall@5      | recall@10      | unique captions                   | novel captions |  |
| Skeleton Key [43] | -           | -             | -              | 66.96%                            | 52.24%         |  |
| Ours-baseline     | 27.5        | 59.3          | 74.0           | 61.56%                            | 51.38%         |  |
| Ours-SR-PL        | 33.0        | 66.4          | 80.1           | 72.34%                            | 61.52%         |  |

Unique captions: captions that are unique in all generated captions

Novel captions: captions that have not been seen in training

### Qualitative results



BS: A vase with flowers sitting on a table.

Ours: A vase filled with red flowers on a table.



BS: A vase with flowers sitting on a table.

Ours: A white vase with pink flowers sitting in a garden.



BS: A group of people standing in a room.

Ours: A group of people standing around a table with food.



BS: A kitchen with a stove and oven in the.

Ours: A white stove top oven in the kitchen.



BS: A kitchen with a stove and oven in the

Ours: A kitchen with a stove and stainless steel appliances.



BS: Two children are playing tennis on a tennis court. Ours: Two young children standing at the tennis court holding tennis rackets.



#### Problems in Captioning

- Machine and human captions are quite distinct
  - Word distributions
  - Vocabulary size
  - Strong bias (frequent captions)
- How to generate human-like captions
  - Multiple captions
  - Diverse captions



**Ours**: a person on skis jumping over a ramp



**Ours:** a cross country skier makes his way through the snow

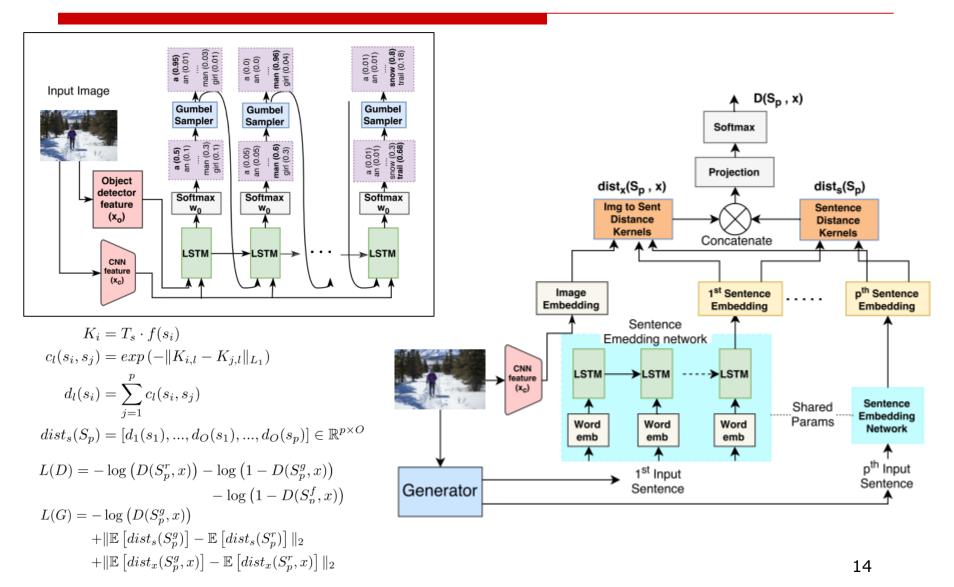


**Ours**: a skier is making a turn on a course



**Ours**: a skier is headed down a steep slope

Baseline: a man riding skis down a snow covered slope



Rakshith Shetty, et al., Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training. ICCV, 2017.



- Discreteness Problem
  - Produce captions from generator
    - Generate multiple sentences and pick one with highest prob
    - Use greedy search approaches (beam search)
  - Directly providing discrete samples as input to discriminator does not allow BP (Discontinuous, Non-differentiable)
- □ Alternative Options:
  - Reinforce trick (Policy Gradient)
    - ✓ High variance
    - Computationally intensive (sampling)
  - Softmax Distribution -> Discriminator
    - Easily distinguishes between softmax distribution and sharp ref.
  - Straight-Through Gumbel Softmax approximation

### **Gumbel-Softmax**



J Gumbel分布

$$egin{aligned} ext{CDF:} & G_Z(z;a,b) = Pr(Z \leq z) = e^{-e^{-rac{z-a}{b}}} \ ext{PDF:} & f(z;a,b) = rac{1}{b} \, e^{-(rac{z-a}{b} + e^{-rac{z-a}{b}})} \end{aligned}$$

均值 $a + \gamma b$ 

□ 标准Gumbel分布G(0,1)
 G(0,1) = e<sup>-e<sup>-z</sup></sup>
 f(z) = e<sup>-(z+e<sup>-z</sup>)</sup>
 □ 采样

$$X_{\pi} = argmax(log(\pi_k) + G_k)$$
$$G_k = -log(-log(U)), U \sim U(0, 1)$$
$$y_i = \frac{\exp((\log(\pi_i) + g_i)/\tau)}{\sum_{j=1}^k \exp((\log(\pi_j) + g_j)/\tau)}$$

1.  $U \sim \text{Uniform}(0, 1)$ 采样 $u_1, \ldots, u_K$ 。 2.  $Z = -\ln(-\ln U)) \sim G_Z(z; 0, 1)$ 则  $\{z_i = -\ln(-\ln u_i))\}_{i=1}^K \mathbb{B}Z$ 的采样。 3.  $Y = \arg\max_i (x_i + z_i)$ 是服从Categorical $(\pi_1, \ldots, \pi_K)$ 分布的。

16



#### Experimental Results

#### **Performance Comparison**

| Method         | Meteor | Spice |
|----------------|--------|-------|
| ATT-FCN [45]   | 0.243  | _     |
| MSM [44]       | 0.251  | _     |
| KWL [26]       | 0.266  | 0.194 |
| Ours Base-bs   | 0.272  | 0.187 |
| Ours Base-samp | 0.265  | 0.186 |
| Ours Adv-bs    | 0.239  | 0.167 |
| Ours Adv-samp  | 0.236  | 0.166 |

#### Diversity in a set of captions for corresp. Image

- *Div-1* ratio of number of unique unigrams in  $S_p$  to number of words in  $S_p$ . Higher is more diverse.
- Div-2 ratio of number of unique bigrams in  $S_p$  to number of words in  $S_p$ . Higher is more diverse.
- *mBleu* Bleu score is computed between each caption in S<sub>p</sub> against the rest. Mean of these p Bleu scores is the mBleu score. Lower values indicate more diversity.

#### **Diversity Comparison**

| Method            | n                | Div-1     | Div-2     | mBleu-4   | Vocab-<br>ulary     | % Novel<br>Sentences  |
|-------------------|------------------|-----------|-----------|-----------|---------------------|-----------------------|
| Base-bs           | 1 of 5<br>5 of 5 | 0.28      | 0.38      | 0.78      | 756<br>1085         | 34.18<br>44.27        |
| Base-samp         | 1 of 5<br>5 of 5 | - 0.31    | _<br>0.44 | _<br>0.68 | 839<br>1460         | 52.04<br>55.24        |
| Adv-bs            | 1 of 5<br>5 of 5 | 0.34      | _<br>0.44 | _<br>0.70 | 1508<br>2176        | 68.62<br>72.53        |
| Adv-samp          | 1 of 5<br>5 of 5 | _<br>0.41 |           |           | 1616<br><b>2671</b> | 73.92<br><b>79.84</b> |
| Human<br>captions | 1 of 5<br>5 of 5 | 0.53      | _<br>0.74 | 0.20      | 3347<br>7253        | 92.80<br>95.05        |

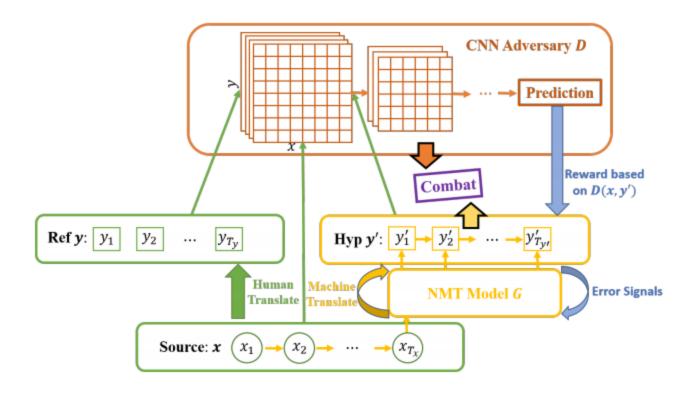
#### **Corpus Level Diversity**

- *Vocabulary Size* number of unique words used in all generated captions
- % Novel Sentences percentage of generated captions

### **Adversarial Neural Machine Translation**



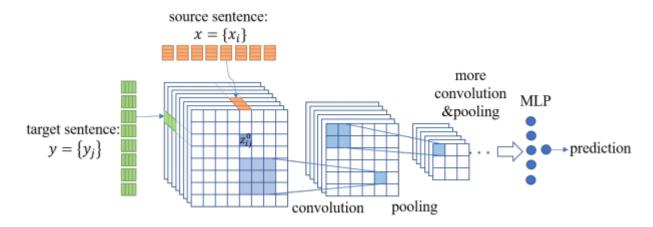
#### **Framework**



### **Adversarial Neural Machine Translation**



#### Discriminator



#### Training

- Warm-up training with MLE
- For a mini-batch, 50% samples for PG, others for MLE
- Reward: whole sentence reward for each time step





- CaptionGAN: <u>Theano Implementation</u>
- SeqGAN: <u>TensorFlow Implementation</u>
- □ Adversarial-NMT: <u>PyTorch Implementation</u>



### Thank you~