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Show, Tell and Discriminate

[0 Problems in Image Captioning
B |mitate the language structure patterns (phrases, sentences)
B Templated and Generic (Different image -> Same Captions)
B Stereotype of sentences and phrases (50% from trainingset)
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Xihui Liu, et al. Show, Tell and Discriminate: Image Captioning by Self-retrieval with Partially Labeled Data. ECCV 2018, CUHK.



Show, Tell and Discriminate

[1 Motivation
B Both discriminativeness and fidelity should be improved
B Discriminativeness: distinguish correspond. image and others
B Dual task: Image captioning < Text-to-Image

[0 Model Architecture

B Captioning Module
B Self-retrieval Module

v" Act as a metric and an evaluator of caption discriminativeness
to assure the quality of generated captions

v" Use unlabeled data to boost captioning performance



Show, Tell and Discriminate

[ Framework

Ground-truth CIDEr
Captions C*! —

Labeled
images I . S e ks n a ua n A NSNS NS NSNE SRR RERRN S Labeled [
Visual features v ¥ Caption features : Visual features  images I

Sampled .
vl - Captions — ¢t - pl
lmage ~~ ~ Language w/ GT ¢! Language ™~ " Self-retieval *“— <— Image
Encoder Decoder Sampled Encoder Reward Encoder
vt Captions ct v
B Y o w/o GT ¢
§# ¥ - Unlabeled Unlabeled
images e mages Ju
Captioning Module Self-retrieval Module
Image ———> Caption Image Encoder (CNN) Caption Encoder (GRU)
C ={w,w,, .., Ww
1 o ) v = E(D) ¢ = E(0)
€ = twi, W, ..., Wy} Similarity between ¢; and v;: s(c;, v;)
Encoder: CNN Decoder: LSTM
v =E;(I) C =D.(v)

Train with ranking loss:
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t=1
Adv-train: 7(CP) = 1¢iger(C) + @ 1ot (CF, {14, .., I,}) where [x], = max(x, 0)



Show, Tell and Discriminate

[0 Improving Captioning with Partially Labeled Image
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Show, Tell and Discriminate

[1 Moderately Hard Negative Mining in Unlabeled Images

Query caption & image Ranked hard negatives Moderately hard negative mining
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Show, Tell and Discriminate

[l Training Strategy
B Train text-to-image self-retrieval module

v

Images and corresponding captions in labeled dataset

B Pre-train captioning module

v
v
v

Images and corresponding captions in labeled dataset
Share image encoder with self-retrieval module
MLE with cross-entropy loss

B Continue training by REINFORCE

v

AN NN

Reward for labeled data: CIDEr and self-retrieval reward
Reward for unlabeled data: self-retrieval reward

CIDEr: guarantee the similarity between caption and groundtruth
Self-retrieval reward: encourage caption to be discriminative



Show, Tell and Discriminate

[1 Implementation Details

B Self-retrieval module:

v" Word embedding: 300-D vector

v" Image encoder: ResNet-101

v Language decoder: single GRU with 1024 hidden units
B Captioning module:

v Share image encoder with self-retrieval module

v" Language decoder: attention LSTM

v Visual feature: 2048x7x7 before pooling

v a =1, #labeled data: #unlabeled data = 1: 1

B |[nference:
v"  Beam search size: 5

B Unlabeled data: COCO unlabeled images



Show, Tell and Discriminate

[J Quantitative results

Table 1. Single-model performance by our proposed method and state-of-the-art meth-
ods on COCO standard Karpathy test split.

Methods CIDEr SPICE BLEU-1 BLEU-2 BLEU-3 BELEU-4 METEOR ROUGE-L
Hard-attention [47] - - T1.8 50.4 35.7 25.0 23.0 -
Soft-attention [47] - - T0.7 49.2 34.4 24.3 23.9 -

VAE [32] 90.0 - 72.0 2.0 37.0 28.0 24.0 -

ATT-FCN [50] - - T0.9 03.7 40.2 30.4 24.3 -
Att-CNN+RNN [46]| 94.0 - 74.0 56.0 42.0) 31.0 26.0 -
SCN-LSTM [14] 101.2 - T2.8 6.6 43.3 33.0 25.7 -
Adaptive [26)] 108.5 - 74.2 2&.0 43.9 33.2 26.6 -
SCA-CNN [5] 95.2 - 71.9 4.8 41.1 31.1 25.0 n3.1
SCST-Att2all [35] 114.0 - - - - 34.2 26.7 a5.7
LSTM-A [49] 100.2  15.6 73.4 06.7 43.0 32.6 25.4 54.0

DRL [34] 93.7 - 71.3 53.9 40.3 30.4 25.1 52.5
Skeleton Key [43] 106.9 - T74.2 o7.7 44.0 33.6 26.8 55.2
CNNL+RHN [16] 98.9 - 72.3 0.3 41.3 30.6 25.2 -

TD-M-ATT [4] 111.6 - T6.D 60.3 45.6 34.0 26.3 D5.0
ATTN4C+D(1) [27]|114.25 21.05 - - - 36.14 27.38 57.29
Ours-baseline 112.7  20.0 9.7 62.2 47.1 35.0 26.7 56.4
Ours-SR-FL 114.6  20.5 T9.8 62.3 47.1 34.9 27.1 56.6
Ours-SR-PL 117.1  21.0 80.1 63.1 48.0 30.5 27.4 a7.0

Baseline: captioning module only trained only with CIDEr (w/o self-retrieval module)
SR-FL: proposed method training with fully-labeled data
SR-PL.: proposed method training with additional unlabeled data



Show, Tell and Discriminate

[J Quantitative results

Table 2. Single-model performance by our proposed method and state-of-the-art meth-
ods on Flickr30k.

Methods CIDEr SPICE BLEU-1 BLEU-2 BLEU-3 ELEU-4 METEOR ROUGE-L
Hard-attention [47] - - 66.9 43.9 209.6 19.9 18.5 -
Soft-attention [47] - - 66.7 43.4 28.8 19.1 18.5 -

VAE [32] - - T72.0 a3.0 38.0 25.0 - -

ATT-FCN [50] - - 64.7 46.0 32.4 23.0 18.9 -
Att-CNN+RNN [46] - - 73.0 25.0 40.0 25.0 - -
SCN-LSTM [14] - - 73.5 53.0 37.7 20.7 21.0 -
Adaptive [26] 53.1 67.7 49.4 35.4 2h.1 20.4 -
SCA-CNN [5] - - 6G.2 46G.8 32.5 22.3 19.5 -
CNNL+RHN [16] 61.8 15.0 T3.8 56.3 41.9 30.7 21.6 -
Ours-baseline o7.1 14.2 T2.8 ad.4 35.0 7.1 20.7 48.5
Ours-SR-FL 61.7 15.3 72.0 53.4 38.5 7.8 21.5 49.4
Ours-SR-PL 65.0 15.8 72.9 4.5 40.1 29.3 21.8 49.9

Baseline: captioning module only trained only with CIDEr (w/o self-retrieval module)
SR-FL: proposed method training with fully-labeled data
SR-PL.: proposed method training with additional unlabeled data



Show, Tell and Discriminate

[J Quantitative results
Table 3. Ablation study results on COCO.

Experiment Settings CIDEr SPICE BLEU-3 BLEU-4 METEOR ROUGE-L
Baseline 112.7 20.0  47.1 35.0 26.7 56.4
VSE++ 117.1 21.0 48.0 35.8 27.4 57.0
Retrieval Loss VSEO 116.9 209  47.7 35.7 27.4 56.8
softmax 114.5 205  46.8 34.6 27.1 56.5
Weight of 0 112.7 20.0 47.1 35.0 26.7 56.4
Self-retrieval 1 117.1 21.0 48.0 35.8 27.4 57.0
Reward a 4 113.7 205  46.5 34.3 27.0 56.5
_ 1:2 115.4 205  46.8 34.7 27.2 56.6
Ratio 3‘3“""13‘31‘; iagEIEd 1:1 117.1 21.0 48.0 35.8 27.4 57.0
and uniabele 2:1 115.0 20.5  46.8 34.7 27.2 56.7
Hard Negative no hard mining| 114.6  20.7 16.7 34.6 27.3 56.7
Index Range top 100 114.1 20.3  46.6 34.5 27.0 56.4
top 100-1000 |117.1 21.0 48.0 35.8 27.4 57.0
VSEO: L, .+(C;i, {1, I5,- . I,}) = Z[m — s(c;,v;) + s(ci,v5)] 4
JFi

VSE++: Lyet(Ci, {11, In, -+ . I,}) = n}ia_c[m — s(eisvi) + s(ei, vj)]+
j#i



Show, Tell and Discriminate

1 Uniqgueness and novelty evaluation

Table 4. Text-to-image retrieval performance, and uniqueness and novelty of generated

captions by different methods on COCO.

Methods Generated-caption-to-image retrieval | Uniqueness and novelty evaluation
) recall@] recall@aj recalld@dl0 |unique captions novel captions
Skeleton Key [43] - - - 66.96% 52.24%
Ours-baseline 27.5 59.3 74.0 61.56% 51.38%
Ours-SR-PL 33.0 66.4 80.1 72.34% 61.52%

Unique captions: captions that are unique in all generated captions
Novel captions: captions that have not been seen in training

1 Qualitative results

BS: A vase with &
flowers sitting on § ”S :
atable. N4

@i BS: A vase with
i flowers sitting on a
g table.

@l Ours: A vase .
B Ours: A white vase

filled with red
% flowers on a with pink flowers
table. gl sitting in a garden
BS: A kitchen BS: A kitchen with
with a stove and a stove and oven in
oven in the. the.

Ours: A kitchen
with a stove and
less steel

Ours: A white
stove top oven In
the kitchen.

J

al

appliances

BS: A group of
people standing in a
| room.

Ours: A group of
people standing
around a table with
food

BS: Two children are
playing tennis on a
tennis court.

Ours: Two young
children standing at
the tennis court
holding tennis
rackets.




[0 Problems in Captioning

B Machine and human
captions are quite distinct
v" Word distributions
v" Vocabulary size
v' Strong bias (frequent
captions)
B How to generate human-like
captions
v" Multiple captions
v" Diverse captions

Ours: a person on skis jumping
over a ramp

Ours:
makes his way through the snow

a Cross country skier

Ours: a skier is making a turn
on a course

(R

\as

L .

Ours: a skier is headed down a
steep slope

Baseline: a man riding skis down a snow covered slope
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Rakshith Shetty, et al., Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training. ICCV, 2017.
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Rakshith Shetty, et al., Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training. ICCV, 2017.



Speaking the Same Language

[1 Discreteness Problem
B Produce captions from generator

v" Generate multiple sentences and pick one with highest prob
v' Use greedy search approaches (beam search)

B Directly providing discrete samples as input to discriminator
does not allow BP (Discontinuous , Non- differentiable)

[1 Alternative Options:

B Reinforce trick (Policy Gradient)
v High variance
v' Computationally intensive (sampling)
B Softmax Distribution -> Discriminator
v Easily distinguishes between softmax distribution and sharp ref.

B Straight-Through Gumbel Softmax approximation
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Gumbel-Softmax

0 Gumbel4#
CDF: Ggz(z;a,b) =Pr(Z<z)=e ° o
PDF: f(z;a,b):%e (F24e 7))
¥{fa + yb
O frEGumbel9#G(0,1)
G(0,1)=e " f(z) = e~
O X+
X, = argmaz(log(my) + Gy)
Gy, = —log(—log(l7)), U ~ U(0,1)
v — exp((log(mi) +gi)/7)

Sk exp((log(m;) + g;)/7)

1. U ~ Uniform(0, 1)3#uy, ..., uk.
2Z=—In(—InU)) ~ Gz(20,1)u {z; = —In(—Inw;))}* , EZ0FH. 16
3.Y = argmax; (z; + z; ) 2R Categorical(my, ..., mx )57ERY,



Speaking the Same Language

[1 Experimental Results

Performance Comparison Diversity Comparison
Method Meteor Spice Vocab- % Novel
Method n Div-1 Div-2 mBleu-4 ulary Sentences
fg;lFCN 4] ggﬁ - Basebs  1Of5 - - - 756 34.18
(] ' - BEDS T 50f5 028 038 078 1085 4427
KWL [26] 0.266 0.194
Base-sam lof5 - - — 839 52.04
Ours Base-bs 0.272  0.187 SR Sofs 031 044 068 1460 5524
8‘“5 izsc']j’amp gggg g :f_’g adepe  LofS - - ~ 1508 68.62
UIs ACY=DS - - ° 50f5 034 044 070 2176 7253
Ours Adv-samp 0.236 0.166
Ad lof5 - - — 1616 73.92
VP sof5 041 055 051 2671 79.84
Human lof5 - - — 3347 92.80
Diversity in a set of captions for corresp. Image captions S5of5 053 074 020 7253  95.05
e Div-1 - ratio of number of unique unigrams in S, to . .
number of words in S,,. Higher is more diverse. Corpus Level Dive rsity
e Div-2 - ratio of number of unique bigrams in S, to e Vocabulary Size - number of unique words used in all
number of words in .S,,. Higher is more diverse. generated captions
e mBleu - Bleu score is computed between each caption e % Novel Sentences - percentage of generated captions 1
in .S, against the rest. Mean of these p Bleu scores is 7
the mBleu score. Lower values indicate more diversity.




Adversarial Neural Machine Translation

[0 Framework
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Lijun Wu, Yingce Xia, Tie-yan Liu, et al., Adversarial Neural Machine Translation. ACML, 2018.



Adversarial Neural Machine Translation

(1 Discriminator

source sentence:

x = {x;}
B -
. more
i ¥ ' . . com-‘u]uttmn ILP
W— ' =N &pooling ®
largel sentence:[I[f M o T ®
}f={}-'j} i 1 n I == '_1\:' »prediction
m (0 e o

convolution pooling

[1 Training
B  Warm-up training with MLE
B For a mini-batch, 50% samples for PG, others for MLE
B Reward: whole sentence reward for each time step
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Lijun Wu, Yingce Xia, Tie-yan Liu, et al., Adversarial Neural Machine Translation. ACML, 2018.



sSources

1 CaptionGAN: Theano Implementation
[0 SeqgGAN: TensorFlow Implementation
[1 Adversarial-NMT: PyTorch Implementation
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https://github.com/rakshithShetty/captionGAN
https://github.com/LantaoYu/SeqGAN
https://github.com/Este1le/Adversarial-NMT




